pathways to SUCCESS
Excellence in Career, College and Life Preparation
SERIES RCL Circuit

- When the circuit combines R,C,L in series, all series reactance X_C and X_L combines to the net reactance X that means the difference between X_C and X_L, $X = X_C - X_L$ or $X = X_L - X_C$.
- If X_C greater than X_L the circuit is capacitive reactance circuit.
- If X_L greater than X_C the circuit is inductive circuit.
- For the circuit shown $X = X_C - X_L = 60 - 20 = 40 \text{ ohm}$ the new circuit is capacitive circuit.
- Now we are working to the new RC circuit
 1. Calculate the total impedance Z_T
 2. Calculate total current I_T
 3. Calculate voltage across R: V_R
 4. Calculate voltage across C: V_C
SERIES RCL Circuit (continue)
5. Calculate voltage across L: VL

6. Calculate phase angle θ between VT and IT

More Series RCL circuit calculation
1. Calculate the net reactance circuit X

2. Calculate total impedance Z_T

3. Calculate total current I_T

4. Calculate voltage across R: V_R

5. Calculate voltage across C: V_C

6. Calculate voltage across L: V_L

7. Calculate phase angle θ between VT and IT
PARALLEL RCL Circuit

- When the circuit combines R,C,L in parallel reactive branch currents can be combined to obtain one net current, designated by Ix then the net reactive current IX can be combined using phasors with the resistor current IR to obtained total current IT
 - \(IT = \sqrt{IR^2 + Ix^2} \)
- If IC greater than IL the circuit is capacitive circuit.
- If IL greater than IC the circuit is inductive circuit.
- Calculate inductive branch current \(IL = \frac{VT}{XL} = \frac{12V}{2} = 6A \)
- Calculate capacitive branch current \(IC = \frac{VT}{XC} = \frac{12V}{6} = 2A \)
- Since IL > IC the net circuit is inductive circuit with the new value of inductive reactance X is \(X = \frac{VT}{Ix} = \frac{12V}{4A} = 3 \text{ Ohm} \)
RCL Series and Parallel Circuits

PARALLEL RCL Circuit
1. Calculate the current IR

2. Calculate the total current IT

3. Calculate total impedance ZT

4. Calculate the phase angle θ difference between VT and IT
More Parallel RCL circuit calculation

1. Calculate current I_R

2. Calculate current I_L

3. Calculate current I_C

4. Calculate net current I_x

5. The net circuit is capacitive or inductive?

5. The new value for reactance X

6. Calculate total current I_T

7. Calculate total impedance Z_T

8. Calculate phase angle θ