A differential amplifier

- Both transistors are identical
A differential amplifier with single-ended output

Block symbol

\(v_{\text{out}} = A(v_1 - v_2) \)

(A is one-half the differential output value)
Single-ended output and single-ended input.

\[v_{out} = Av_1 \]

Diagram:
- \(v_1 \)
- \(+V_{CC} \)
- \(R_C \)
- \(R_E \)
- \(-V_{EE} \)
dc analysis

I_T, the *tail current*, flows in R_E

$I_T = \frac{V_{EE} - V_{BE}}{R_E}$

$I_E = \frac{I_T}{2}$

$V_C = V_{CC} - I_E R_C$

R_E

$-V_{EE}$

$+V_{CC}$

R_C

R_C

R_C
Common-mode gain

\[A_{CM} = \frac{R_C}{2R_E} \]

Diagram:

- Input: \(V_{in(CM)} \)
- Output: \(V_{out} \)
- Power supply: \(+V_{CC} \)
- Resistors: \(R_C \) and \(R_E \)
- Grounds: \(-V_{EE} \)
Common-mode rejection ratio

- $\text{CMRR} = \frac{A}{A_{\text{CM}}}$
- $\text{CMRR}_{\text{dB}} = 20\log \text{CMRR}$
- The higher the CMRR, the better
- A typical op amp has $\text{CMRR}_{\text{dB}} = 90 \text{ dB}$
- Much interference is common-mode and a high CMRR means an amplifier will be effective in rejecting interference
When V_I is more negative than V_{REF}, V_D is greater than 0V, and V_0 switches to $+V_{SAT}$.
In this circuit, a zener diode (CR1) completes the feedback path for U1.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0V.
If V_I is positive (greater than 0V), V_o swings in a negative direction towards $-V_{SAT}$.

When V_o approximately equals the zener breakdown voltage (V_z), CR1 conducts and provides negative feedback. The feedback clamps V_o to the value of V_z and prevents negative saturation.
In this circuit, V_0 equals

a. $-V_{\text{SAT}}$

b. 0.7 Vdc.

c. 0V.

d. $+V_{\text{SAT}}$.
In this circuit, V_0 equals

a. $-V_{\text{SAT}}$.
b. 0.7 Vdc.
c. 0V.
d. $+V_{\text{SAT}}$.

...
Based on the placement of CR1 (anode lead to U1 output terminal) into the circuit, V_0 switches between $-V_Z$ and $+V_F$.

NOTE: V_Z is the zener diode breakdown voltage, and V_F is the forward voltage drop of CR1.
In this circuit, the cathode of CR1 is connected to the U1 output terminal. As a result, V_0 switches between

a. $+V_Z$ and $-V_F$

b. $-V_Z$ and $+V_F$

c. $+V_{SAT}$ and $-V_{SAT}$.
In this circuit, the cathode of CR1 is connected to the U1 output terminal. As a result, V_0 switches between

a. $+V_Z$ and $-V_F$.
b. $-V_Z$ and $+V_F$.
c. $+V_{SAT}$ and $-V_{SAT}$.

Correct. V_0 is clamped at $+5\, \text{Vdc}$ and $-0.7\, \text{Vdc}$.
If V_0 equals +5.1 Vdc, V_I

a. is negative.
b. is positive.
c. can be either negative or positive.
If V_0 equals +5.1 Vdc, V_I

a. is negative.
b. is positive.
c. can be either negative or positive.

Correct. If V_I is negative, V_0 switches toward $+V_{SAT}$ until the clamping action of CR1 occurs.
A zener diode clamped circuit controls the levels of a sine wave or square wave input signal.

For this circuit, either input waveform is clamped at \(-V_Z\) and \(+V_F\). If the CR1 connections are reversed, clamping occurs at \(+V_Z\) and \(-V_F\).
In this circuit (note V_i and V_Z),

a. U1 is saturated.
b. CR1 cannot conduct.
c. V_o switches between -5.1 Vdc and +0.7 Vdc.
d. All of the above.
In this circuit (note V_i and V_o),

a. U_1 is saturated.
b. CR_1 cannot conduct.
c. V_o switches between $-5.1 \ \text{Vdc}$ and $+0.7 \ \text{Vdc}$.
d. All of the above.

Correct. CR_1 conducts as a zener diode when V_o is positive and as a diode when V_o is negative.
- V_o switches between $+V_F$ and $-V_Z$.

- If CR1 is reversed, V_o switches between $-V_F$ and $+V_Z$.
In this circuit, V_I alternates between $-4\, V_{dc}$ and $-6\, V_{dc}$. V_O switches between

a. negative and positive saturation, respectively.

b. positive and negative saturation, respectively.
In this circuit, V_I alternates between -4 Vdc and -6 Vdc. V_o switches between

a. negative and positive saturation, respectively.

b. positive and negative saturation, respectively.

Correct. If the noninverting input is negative with respect to the inverting input, V_o is negative; if it is positive, V_o is positive.
END